
  

 
 
 
 
 

The duration of a shooting star 
 

This is an article from my home page: www.olewitthansen.dk 
 
 
 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ole Witt-Hansen    2009 (2016) 



  

 
 
 

Contents 
  

1. A shooting star .......................................................................................................................1 
2. Why does a shooting star decelerate? ....................................................................................1 
3. The heating of a meteor .........................................................................................................4 
3.1 The Duration of a shooting star............................................................................................5 
3.2 Numerical solutions to the problem .....................................................................................7 



 The duration of a shooting star 1 

 

1. A shooting star 
Sunday the second of march 2009 a large meteor (shooting star) was observed in many places in   
Denmark. It is common knowledge that a meteor obtains so high temperatures that it is seen as a 
shooting star, when it burns out and evaporates within a second on its way down through the 
atmosphere of the earth. 
In my position as a physics teacher in the Danish senior high, I have often encountered the 
question whether I could explain the phenomena. 
 
My answer is that I possibly can, but it is highly unlikely that the inquisitor will understand the 
answer. 
I have searched the Internet, but I have never encountered a theoretical calculation, which just 
qualitatively could explain, knowing the mass and the speed of the meteor, what happens to a 
shooting star on its way down the atmosphere.  
My aim is to try to answer some of these questions in the following. I assume that the shooting star 
is a piece of rock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A photo of a meteor in the Swam of the Leonides  taken i Denmark November 2006  

2. Why does a shooting star decelerate? 
In analyzing a complex physical problem, it is often necessary to make simplifying assumptions. 
In this case we assume that the collision of the meteor with the molecules in the atmosphere is 
completely inelastic. That the meteor and the molecules do not continue as one body (which is 
actually the definition of an inelastic collision), is of minor importance for the result of the 
calculations.  
 
First some notations:  The initial mass of the meteor is m0. In the elapsed time dt,  it collides with 
the molecules having the mass dm, and for that reason the velocity decreases an amount dv. 
According to the conservation of momentum: 
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The last equation is then rewritten as:   00  vdmdvm  

  
Which expresses a differential conservation of momentum, and we could equally well have written 
it from the start. 
To construct a solvable differential equation we assume, that the density ρ of the atmosphere is 
constant, and does not decrease exponentially according to the formula: 
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Where M is the molar mass, R  is the gas constant (from the equation of state for ideal gasses),  
T is the absolute temperature, g is the gravitational acceleration, p0 is the pressure at sea level and 
h is height over sea level 
 
The assumption of a constant density does not offer a serious restriction, since we may replace the 
real atmosphere with an atmosphere having a constant density, but with the same mass in a smaller 
volume. 
 
The resulting thickness can the be calculated from the equation: 0pghair  , where h  is the new 

thickness of the atmosphere 3/29.1 mkgair  and  Pap 5
0 10013,1 ,  

which gives the result h= 8,0 km 
 
To establish an expression for dm, we consider the tube, with a diameter equal to the cross section, 
that the meteor ploughs through during the time dt. The length of the tube is ds = vdt, and the cross 
section of the tube, (which is the cross section of the meteor), we denote A. The volume dV is 
therefore dV = Avdt.  
We are then able to write an expression for the mass dm. 

Avdtdm   and therefore  Av
dt

dm  ,   which is a well known formula for the flow of liquids 

 Dividing the equation (2.2) v
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  by dt , we obtain an equation which can be integrated. 
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This equation is already known from turbulent resistance in liquids. 
In the equation above, we have not taken into account the increase in velocity caused by the 
gravitational acceleration however, it is easy to add the term g to the right side.  
The equation then reads: 
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This equation can not be integrated directly, but instead we solve the inequality: 
 

    airag 10
1  2

0
10
1 v

m

A
g


       

which gives     
A

gm
v


010

 v >241 m/s. 

 
As the speed of a meteor usually is much higher than this value, we may safely neglect the 
gravitational acceleration. Without the term g, the equation (2.4) can be separated and integrated.  
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And we may also find an expression for the distance travelled. 
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When the distance is known, we may find t  ” the time for the drop” from the last equation. It can 
then be inserted in (2.5) to determine the velocity v as a function of the distance s.  
 
The derivations above can not be maintained for several reasons, but we shall proceed to calculate 
the loss in kinetic energy to get an estimate of the increase in temperature. But first we need some 
data.   



  

3/29.1 mkgair   .    

smskmv /10/10 4
0   (The escape velocity from the earth 11. 2 km/s) 

m0 = 100 kg,  ρmeteor = 2.8 g/cm3       
 kgrVm meteormeteormeteormeteor 1003

3
4       rmeteor = 0.204 m   and Ameteor =0,131 m2. 
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From (2.5) we may for example investigate how long it takes for the meteor to reduce its speed 
with 90%. So we solve the equation: 
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Even if this is compatible with the duration of a shooting star, we cannot put much credibility in 
this result. The formula for the turbulent resistance requires namely adding a “form factor” α < 1 to 
the cross section A of the meteor. Adding this form factor the time of travelling will be prolonged 
with the inverse value of the form factor. 
The distance the meteor has travelled can then be calculated from (2.6) 
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You should notice that this distance is relative to the ”thickness” of the atmosphere with a constant 
density that we found to be 8.0 km.  
 
We shall then evaluate the loss in kinetic energy. 
. 
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From which we see that it has lost 99% of its energy on a distance of 1.36 km. 
  
How much of this energy goes to heating of the meteor is preliminary speculation.  

3. The heating of a meteor 
We have assumed the meteor is a lump of rock. The specific heat of a rock: crock = 800 J/kgK, and 
if we (as a working hypothesis) assume that a fraction 10

1  goes to heating of the meteor, we can 

find the increase in temperature from the caloric equation, 
 
(3.1)  TmcE   
 
The result is: JJE 89 1095,4100,599,01,0  , giving a temperature: ∆T = 6,2 103 K 
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So the temperature is about 6000 K. However we do not have any real possibility to estimate the 
fraction of energy which goes to heating of the meteor. An estimate 100

1  leads to a temperature 

∆T = 6,2 102 K. Since we know, that the meteor usually evaporates, the first estimate is probably 
the more likely, than the last. And it is in good accordance with the fact that shooting star has the 
same luminosity as is the case of the stars. 
We have used the empiric formula, which is usually used for the drag in turbulent flow, but 
hitherto without a form factor on the cross section A of the meteor. If we replace the cross section 
A by A and put 10

1 , then both the time and the distance roughly speaking are increased by a 

factor 10, and we get t = 5.9 s and  s = 14 km.  
 
Since a meteor hardly is at rest, when it enters the gravitational field of the earth, the velocity 
when it reaches the atmosphere is more likely to be  20 - 30 km/s, than 10 km/s.  If we do a similar 
calculation, with the v0 = 25 m/s, the time is reduced with a factor 3 to 2.0 s and s = 8.7 km. 
 
The problem with these calculations are however, at even if it gives at qualitative understanding of 
the phenomena of a shooting star, you may “screw on” the parameters α and η, until you get 
exactly the result you want. 
 For a more quantitative understanding, the simple model above is simply no good. 

3.1 The Duration of a shooting star 
The assumption that the meteor as a whole is heated until it evaporates cannot be maintained. 
We shall therefore consider the problem from quite another view, as we assume that only the most 
outer layer of the meteor (in the direction of motion) is heated and evaporates. Consequently the 
meteor gradually loses its mass, travelling down through the atmosphere. 
 
This model, will certainly build on much better theoretical foundation, but the drawback is that the 
resulting differential equations can no longer be solved analytically. 
 
To do the calculation we will also have to know the heat of vaporization for the meteor. 
As before we assume, that only the fraction   of the loss in kinetic energy goes to heating of the 
meteor and we have a form factor α so that the now size dependent area Ar = A .   

From the previous formula (2.4): 2v
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 , we may express the meteor’s loss of power 
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Notice that the loss in power is proportional to v3. 
When the mass is not constant anymore, we can no longer integrate (2.4) for dtdv / . 
However it is still possible to establish an equation, which gives the relation between mass and 
velocity. 
The conjecture is namely that it is only a small part of the mass dm, in the outer layer of the 
meteor, which is heated so violently that it evaporates. To calculate dQ the heat needed, we use the 
familiar formula where L is the heat of vaporization. 
 
(3.3)    LdmdQ   
 



  

The energy to the heating is delivered by the collision with the molecules in the air.  
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The equation may either be solved with respect to m or v2. 
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We may from some simple considerrations obtain a conception of the size of 
L2
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If we tentatively assume that the initial velocity is: skmv /200  , and that the mass is reduced to 
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, and if we as before 

put 10
1 , then it yields   L=4,35 106 J/kg.  The heat of vaporization for a rock: Lrock = 6.26 

106J/kg, so the stipulated values for α and η cannot be entirely discarded.  
Depending of the choice of L,, we find different results of course. 
 
In the following, we shall apply 10

1 and  L=4.35 106 J/kg 

We are interested in finding how the mass m and the distance s depend on time, so we return to the 

differential equation (2.4)  2v
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But when the mass is reduced, we can no longer count on that the area is unchanged. 
 
On the contrary, the mass is proportional to the volume, proportional to r3 , and the cross section A 

is proportional to r2, so we must have: 
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From the equation: 3AvP    and  
dt

dm
LP    we may also find a differential equation for the 

dependence of the mass with time. 
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If we also want the distance travelled by the meteor, we must use the definition vdtds / . 

3.2 Numerical solutions to the problem 
The differential equations for the velocity v, the distance s travelled by the meteor and the mass of 
the meteor, are linked to three coupled differential equations. To solve them one has to resort to 
numerical methods. The graphs shown below, exhibit examples of solutions to the three 
differential equations, where their dependence on time are depicted in the same figure.  
The variables are scaled to fit in the same coordinate system.  
 
Below are shown some solutions, where the mass is m0 = 100 kg in the first four examples and in 
the last two examples 10.000 kg and 1000 kg respectively. The velocities are 10 ,  15, 20, 25, 25 
and 25 m/s. The graphs show the mass m, velocity v and distance s in the same graph. 
If the mass is measured in the unit 10 kg, the velocity in km/s and the distance in km, the scale on 
the 2. axis will fit for all three variables. The unit on the time axis is 0.1 s.  
  
The figures show among other things, that a mass of 100 kg will burn out if the initial velocity 
exceeds 20 m/s, while a meteor of 1000 kg, will not burn until the velocity exceeds 25 m/s. 
 
As you can read from the figures, a 100 kg meteor looses more than 90% of its energy in less than 
a second, if the velocity is above 15 m/s. We therefore conclude that commonly the duration of a 
shooting star is about one second, what I believe is in good accordance with everyday experience. 
 
After one second the meteor will either have burned out in the atmosphere or it has hit the ground. 
In the case, where the meteor dos not burn completely out, it may possibly be seen as a burning 
ball for a longer time, especially if the trajectory is near to parallel with the surface of the earth. 
     
 
 
 
 



  

 
 
 
 
m0 = 100 kg, v0 = 10 km/s   m0 = 100 kg, v0 = 15 km/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m0 = 100 kg, v0 = 20 km/s   m0 = 100 kg, v0 = 25 km/s 
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m0 = 10.000 kg, v0 = 25 km/s   m0 = 100 kg, v0 = 25 km/s 
     
 
 
 
 
 
 
 
 
 
 
 
 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  


